5,861 research outputs found

    Mobile and immobile gaseous transport

    Get PDF
    We introduce a solver method for mobile and immobile transport regions. The motivation is driven by deposition processes based on chemical vapor problems. We analyze the coupled transport-reaction equation with mobile and immobile areas. We apply analytical methods, such as Laplace-transformation, and for the numerical methods we apply Godunov's scheme, see [Godunov59] and [Leveque02]. The method is based numerically on flux-based characteristic methods and is an attractive alternative to the classical higher-order TVD methods, see \cite{hart83}. In this article we will focus on the derivation of the analytical solutions for general and special solutions of the characteristic methods, that are embedded into a finite volume method. At the end of the article we illustrate the higher-order method for different benchmark problems. Finally the method is proposed with realistic results

    Semantic Segmentation of Pathological Lung Tissue with Dilated Fully Convolutional Networks

    Full text link
    Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis (CAD) system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a dataset of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semi-supervised fashion, utilizing both labeled and non-labeled image regions. The experimental results show significant performance improvement with respect to the state of the art

    Idiopathic pulmonary fibrosis: the turning point is now!

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with poor survival. Recent studies have improved understanding of IPF and new discoveries have led to novel treatment options, which now have become available for patients. In face of the newly available therapies we present an update on the pathophysiology and epidemiology of IPF. We discuss the typical clinical findings and elaborate diagnostic procedures according to current guidelines and our daily practice approach. The role of biomarkers will briefly be outlined. Finally, we discuss novel antifibrotic treatment options for IPF (pirfenidone, nintedanib) and the management of patients regarding to comorbidities and complications. Both pirfenidone and nintedanib were shown to reduce the progression of IPF and therefore represent novel therapeutic strategies in this so far untreatable chronic lung disease

    О "Нижнем силуре" западного Саяна

    Get PDF

    Remodeling of an in vitro microvessel exposed to cyclic mechanical stretch.

    Get PDF
    In the lung, vascular endothelial cells experience cyclic mechanical strain resulting from rhythmic breathing motions and intraluminal blood pressure. Mechanical stress creates evident physiological, morphological, biochemical, and gene expression changes in vascular endothelial cells. However, the exact mechanisms of the mechanical signal transduction into biological response remain to be clarified. Besides, the level of mechanical stress is difficult to determine due to the complexity of the local distension patterns in the lung and thus assumed to be the same as the one acting on the alveolar epithelium. Existing in vitro models used to investigate the effect of mechanical stretch on endothelial cells are usually limited to two-dimensional (2D) cell culture platforms, which poorly mimic the typical three-dimensional structure of the vessels. Therefore, the development of an advanced in vitro vasculature model that closely mimics the dynamic of the human lung vasculatures is highly needed. Here, we present the first study that investigates the interplay of the three-dimensional (3D) mechanical cyclic stretch and its magnitude with vascular endothelial growth factor (VEGF) stimulation on a 3D perfusable vasculature in vitro. We studied the effects of the cyclic strain on a perfusable 3D vasculature, either made of human lung microvascular endothelial cells or human umbilical vein endothelial cells embedded in a gel layer. The in vitro 3D vessels underwent both in-vivo-like longitudinal and circumferential deformations, simultaneously. Our results showed that the responses of the human lung microvascular endothelial cells and human umbilical vein endothelial cells to cyclic stretch were in good agreement. Although our 3D model was in agreement with 2D model in predicting a cytoskeletal remodeling in response to different magnitudes of cyclic stretch, however we observed several phenomena in 3D model that 2D model was unable to predict to. Angiogenic sprouting induced by VEGF decreased significantly in presence of cyclic stretch. Similarly, while treatment with VEGF increased vascular permeability, the cyclic stretch restored vascular barrier tightness and significantly decreased vascular permeability. One of the major findings of this study was that a 3D microvasculature can be exposed to a much higher mechanical cyclic stress level than reported in the literature without any dysfunction of its barrier. For higher magnitudes of the cyclic stretch, the applied longitudinal strain level was 14% and the associated circumferential strain reached the equivalent of 63%. In sharp contrast with our findings, such strain typically leads to the disruption of the endothelial barrier in a 2D stretching assay and is considered pathological. This highlights the importance of 3D modeling to investigate mechanobiology effects rather than using a simple endothelial monolayer which truly recapitulates the in vivo situation
    corecore